Amine modulation of glutamate responses from pyloric motor neurons in lobster stomatogastric ganglion.
نویسندگان
چکیده
The amines dopamine (DA), serotonin (5-HT), and octopamine (Oct) each elicit a distinctive motor pattern from a quiescent pyloric network in the lobster stomatogastric ganglion (STG). We previously have demonstrated that these amines alter the synaptic strength at multiple, distributed sites within the pyloric network that could contribute to the amine-induced motor patterns. Here, we examined the postsynaptic contribution to these changes in synaptic strength by determining how the amines modify responses of pyloric motor neurons to glutamate (Glu), one of the network transmitters, applied iontophoretically into the STG neuropil. Dopamine reduced the Glu responses of the pyloric dilator (PD), ventricular dilator (VD), and inferior cardiac (IC) neurons and enhanced the Glu responses of the lateral pyloric (LP) and pyloric constrictor (PY) neurons. The only effect of 5-HT was to reduce the Glu response of the VD neuron. Oct enhanced the Glu responses of the LP and PY neurons but did not affect the PD, VD, and IC responses. We also examined amine effects on the depolarizing responses to iontophoresed acetylcholine (ACh) in the PD and VD and found that they paralleled the amine effects on Glu responses in these neurons. This suggests that amine modulation of PD and VD responses to Glu and ACh may be explained by general changes in the ionic conductance of these neurons. We compare our results with our earlier work describing amine effects on synaptic strength and input resistance to show that amines act at both pre- and postsynaptic sites to modify graded synaptic transmission in the pyloric network.
منابع مشابه
Amine modulation of the transient potassium current in identified cells of the lobster stomatogastric ganglion.
The pyloric network of the stomatogastric ganglion of the lobster Panulirus interruptus is a model system used to understand how motor networks change their output to produce a variety of behaviors. The transient potassium current (I(A)) shapes the activity of individual pyloric neurons by affecting their rate of postinhibitory rebound and spike frequency. We used two electrode voltage clamp to...
متن کاملAminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion.
Graded chemical synaptic transmission is important for establishing the motor patterns produced by the pyloric central pattern generator (CPG) circuit of the lobster stomatogastric ganglion (Raper, 1979; Anderson and Barker, 1981; Graubard et al., 1983). We examined the modulatory effects of the amines dopamine (DA), serotonin (5-HT), and octopamine (Oct) on graded synaptic transmission at all ...
متن کاملDopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion.
We examined the dopamine (DA) modulation of calcium currents (ICa) that could contribute to the plasticity of the pyloric network in the lobster stomatogastric ganglion. Pyloric somata were voltage-clamped under conditions designed to block voltage-gated Na+, K+, and H currents. Depolarizing steps from -60 mV generated voltage-dependent, inward currents that appeared to originate in electrotoni...
متن کاملMonoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network.
The monoamines dopamine (DA), serotonin (5HT), and octopamine (Oct) can each sculpt a unique motor pattern from the pyloric network in the stomatogastric ganglion (STG) of the spiny lobster Panulirus interruptus. In this paper we investigate the contribution of individual network components in determining the specific amine-induced cycle frequency. We used photoinactivation of identified neuron...
متن کاملSpectral analyses reveal the presence of adult-like activity in the embryonic stomatogastric motor patterns of the lobster, Homarus americanus.
The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 6 شماره
صفحات -
تاریخ انتشار 1997